МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по применению набора реагентов для выявления и количественного определения ДНК вируса Эпштейна-Барр (*EBV*) в клиническом материале методом полимеразной цепной реакции (ПЦР) с гибридизационнофлуоресцентной детекцией **«АмплиСенс[®] EBV-скрин/монитор-FL»**

Формат FRT

АмплиСенс®

ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Российская Федерация, 111123, город Москва, улица Новогиреевская, дом ЗА

ОГЛАВЛЕНИЕ

НАЗНАЧЕНИЕ	3
МЕРЫ ПРЕДОСТОРОЖНОСТИ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛІ	EHA.
ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ	
ПРИБОРОВ ROTOR-GENE 3000/6000 (CORBETT RESEARCH, АВСТРАЛИЯ) И	
ROTOR-GENE Q (QIAGEN, ГЕРМАНИЯ)	7
ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ	
ПРИБОРА LINEGENE 9660 (BIOER TECHNOLOGY CO., LTD, КИТАЙ)	13
ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ	
ПРИБОРА CFX96 (BIO-RAD LABORATORIES, INC. («БИО-РАД ЛАБОРАТОРИЗ,	
ИНК.»), США)	14
ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ	
ПРИБОРА ICYCLER IQ5 (BIO-RAD LABORATORIES, INC. («БИО-РАД	
ЛАБОРАТОРИЗ, ИНК.»), США)	18
ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ	
ПРИБОРОВ МХ3000Р/МХ3005Р (STRATAGENE, США)	22
ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ	
ПРИБОРА «ДТ-96» (ООО «НПО ДНК-ТЕХНОЛОГИЯ», РОССИЯ)	26

НАЗНАЧЕНИЕ

Методические рекомендации описывают порядок действий при использовании набора реагентов для выявления и количественного определения ДНК вируса Эпштейна-Барр (*EBV*) в клиническом материале методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией «АмплиСенс[®] *EBV*-скрин/монитор-FL» совместно с приборами для ПЦР в режиме «реального времени»:

- Rotor-Gene 3000, Rotor-Gene 6000 (Corbett Research, Австралия),
- Rotor-Gene Q (QIAGEN GmbH («Киаген ГмбХ»), Германия),
- LineGene 9660 (BIOER TECHNOLOGY CO., LTD, Китай),
- CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США),
- iCycler iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США),
- Mx3000P, Mx3005P (Stratagene, США),
- «ДТ-96» (ООО «НПО ДНК-Технология», Россия),

а также совместно с автоматической станцией для экстракции нуклеиновых кислот NucliSENS easyMAG (bioMérieux, Франция).

Канал для флуорофора	Название канала детекции для разных моделей приборов ¹
Канал для флуорофора FAM	FAM/Green
Канал для флуорофора ЈОЕ	JOE/HEX/R6G/Yellow/Cy3
Канал для флуорофора ROX	ROX/Orange/TxR

Соответствие названий флуорофоров и каналов детекции

¹ Название каналов детекции для соответствующего детектора см. в соответствующем разделе методических рекомендаций к набору реагентов.

ПОРЯДОК РАБОТЫ ПРИ ИСПОЛЬЗОВАНИИ АВТОМАТИЧЕСКОЙ СТАНЦИИ NucliSENS easyMAG (bioMérieux, Франция)

Вариант 1. Экстракция ДНК с лизисом образца вне прибора

Данный метод экстракции позволяет снизить расход буфера для лизиса NucliSens и предпочтительнее при работе с образцами клинического материала, содержащего сгустки.

- 1. Включить прибор NucliSENS easyMAG и подготовить его к экстракции РНК/ДНК, следуя инструкции к прибору.
- В окне для ввода исследуемых образцов ввести для каждого образца следующие параметры: название образца, материал (*Matrix*) для экстракции ДНК (установить *Plasma*), объем образца (*Volume*) – 0,1 ml, объем элюции (*Eluate*) – 55 mkl, тип образца (*Type*) – *Lysed*, очередность экстракции ДНК в образцах (*Priority*) – *Normal*.
- 3. Создать новый протокол экстракции ДНК и сохранить его. В протоколе указать, что лизис и инкубация образцов происходит вне прибора: *On-board Lysis Buffer Dispensing-No, On-board Lysis Incubation-No.*
- 4. Перенести таблицу образцов в созданный протокол.
- 5. Отобрать необходимое количество специализированных одноразовых пробирок, предназначенных для экстракции ДНК в приборе NucliSENS easyMAG, (включая отрицательный и положительный контроль экстракции). Внести в каждую пробирку на внутренние стенки по 10 мкл ВКО STI-87. Добавить в пробирки по 550 мкл буфера для лизиса NucliSens.

ВНИМАНИЕ! При работе с материалом, содержащем сгустки, лизис рекомендуется проводить в пробирках объёмом 1,5 мл. После окончания инкубации (**пункт 8**) следует провести центрифугирование пробирок при 10 тыс об/мин в течение 1 мин на микроцентрифуге и перенести надосадочную жидкость в специализированные пробирки, предназначенные для экстракции ДНК в приборе NucliSENS easyMAG.

- 6. В пробирки с буфером для лизиса NucliSens и ВКО STI-87, внести по 100 мкл подготовленных проб, используя наконечники с фильтром и тщательно перемешать пипетированием. (Следует избегать попадания в пробирку сгустков слизи и крупных частиц).
- В пробирку отрицательного контроля выделения (ОК) внести 100 мкл ОКО. В пробирку положительного контроля (ПК) выделения внести 90 мкл ОКО и 10 мкл ПКО ДНК ЕВV и ДНК человека.

- 8. Инкубировать пробирки в течение 10 минут при комнатной температуре.
- 9. Ресуспендировать пробирку с магнитной силикой NucliSens (bioMeriuex), интенсивно перемешав на вортексе. Внести в каждую пробирку отдельным наконечником с фильтром по 10 мкл магнитной силики и тщательно перемешать пипетированием. Магнитная силика должна быть равномерно распределена по всему объему пробирки.
- 10.Загрузить пробирки с образцами в прибор, установить наконечники, запустить программу экстракции ДНК с лизисом образцов вне прибора (*off board*).
- 11.После окончания экстракции ДНК извлечь пробирки из прибора.

Пробирки с ДНК-пробами перенести в зону ПЦР-амплификации.

Вариант 2. Экстракция ДНК с лизисом образца в приборе

- 1. Включить прибор NucliSENS easyMAG и подготовить его к экстракции ДНК, следуя инструкции к прибору.
- В окне для ввода исследуемых образцов ввести для каждого образца следующие параметры: название образца, материал (*Matrix*) для экстракции ДНК – плазма (*Plasma*), объем образца (*Volume*) – 0,1-1 ml, объем элюции (*Eluate*) – 55 mkl, тип образца (*Type*) – *Primary*, очередность экстракции ДНК в образцах (*Priority*) – *Normal*.
- 3. Создать новый протокол экстракции ДНК и сохранить его. В протоколе указать, что лизис и инкубация образцов происходит автоматически в приборе: *On-board Lysis Buffer Dispensing-Yes, On-board Lysis Incubation-Yes.*
- 4. Перенести запрограммированные образцы в созданный протокол.
- 5. В каждую пробирку, предназначенную для экстракции ДНК в приборе NucliSENS easyMAG, необходимо добавить **100 мкл** подготовленных проб отдельным наконечником с фильтром.
- 6. Для отрицательного контроля (ОК) в пробирку, предназначенную для экстракции ДНК в приборе NucliSENS easyMAG, необходимо добавить **100 мкл ОКО**. В пробирку положительного контроля (ПК) выделения внести **90 мкл ОКО** и **10 мкл ПКО ДНК ЕВV и ДНК человека**.
- 7. В отдельной стерильной пробирке на 2 мл смешать магнитную силику NucliSens и BKO STI-87 стерильными наконечниками с фильтром в следующем соотношении:

Количество образцов	Количество магнитной силики	Количество
для экстракции ДНК	NucliSens (мкл)	ВКО STI-87 (мкл)
1	10	10
24	250	250
(полная загрузка прибора)	(с запасом на 25 проб)	(из двух пробирок)

Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 5 из 32

- 8. Содержимое пробирки тщательно перемешать. Смесь магнитной силики NucliSens с BKO STI-87 может храниться не более 30 мин.
- 9. Загрузить пробирки с образцами в прибор, установить наконечники, запустить программу экстракции ДНК с лизисом образцов в приборе *(on board)*.
- 10.Дождаться, пока прибор NucliSENS easyMAG не остановит работу в положении *Instrument State-Idle* (примерно 15 мин).
- 11. Тщательно перемешать пробирку с приготовленной смесью магнитной силики NucliSens, BKO STI-87 на вортексе до однородного состояния.
- 12.Открыть крышку прибора и добавить в каждую пробирку отдельным наконечником по 20 мкл смеси. Каждую пробирку тщательно перемешать пипетированием с помощью многоканальной пипетки отдельными наконечниками с фильтром на 200 мкл.
- 13.Запустить на приборе программу продолжения экстракции ДНК.
- 14.После окончания экстракции ДНК извлечь пробирки из прибора.
- 15. Пробирки с ДНК-пробами перенести в зону ПЦР-амплификации.

ОПРЕДЕЛЕНИЕ ПОРОГОВОГО ЗНАЧЕНИЯ ПОЛОЖИТЕЛЬНОГО РЕЗУЛЬТАТА

Перед началом работы с новой серией реагентов следует определить порог (Ct) для положительных образцов по каналу JOE/HEX/Yellow для каждого конкретного прибора. Развести ПКО ДНК EBV и ДНК человека в 100 раз РНК-буфером (например, взять 990 мкл РНК-буфера и 10 мкл ПКО ДНК EBV и ДНК человека). Провести ПЦРамплификацию разведенного образца в пяти повторах по инструкции к набору реагентов. Для прибора Rotor-Gene 3000/6000 выбрать параметр More settings/ Outlier Removal/Устранение выбросов И установить значение порога отрицательных проб (NTC Threshold/Порог фона – ПФ (NTC) равным 0%.). Рассчитать среднее Ct для пяти повторов по каналу JOE/HEX/Yellow. Добавить к среднему Сt 2 цикла. Полученное число будет являться пороговым значением положительного результата. Пример представлен в таблице 1.

Таблица 1

Ст. (JOE/HEX/Yellow) Среднее значение Порог для положительных образцов ПКО ДНК ЕВV и ДНК человека, разведенный в 100 раз 27,15 28,06 27,69 27,27 27,5 29,5

Пример расчета порогового значения положительного результата

ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРОВ Rotor-Gene 3000/6000 (Corbett Research, Австралия) и Rotor-Gene Q (QIAGEN, Германия)

Далее по тексту термины, соответствующие разным версиям приборов и программного обеспечения указаны в следующем порядке: для прибора Rotor-Gene 3000/для англоязычной версии программы Rotor-Gene 6000/для русскоязычной версии программы Rotor-Gene 6000.

Провести этапы пробоподготовки и приготовления реакционных смесей согласно инструкции к набору реагентов. Для проведения амплификации рекомендуется использование тонкостенных пробирок для ПЦР объемом 0,2 мл с плоской крышкой (например, Axygen, США) (детекция через дно пробирки).

Программирование амплификатора

- 1. Включить прибор.
- Поместить пробирки в ротор амплификатора так, чтобы первая пробирка попала в лунку 1; установить ротор в прибор, закрыть крышку (ячейки ротора пронумерованы, эти номера используются в дальнейшем для программирования положения проб в амплификаторе).

ВНИМАНИЕ! Если ротор прибора заполнен не полностью, то его следует уравновесить. Для этого следует заполнить незанятые места пустыми пробирками (*не используйте пробирки от предыдущих экспериментов*). Лунка 1 обязательно должна быть заполнена какой-либо исследуемой пробиркой (*не пустой*).

3. Запрограммировать прибор согласно инструкции изготовителя прибора.

Создание шаблона для проведения теста

- 1. Нажать кнопку *New/Новый* в основном меню программы.
- В открывшемся окне выбрать шаблон запуска эксперимента *Advanced/Детальный мастер* и выделить *Dual Labeled Probe/Hydrolysis probes/Флуоресцентные зонды (TaqMan)*. Нажать кнопку *New/Hoвый*.
- 3. В открывшемся окне выбрать ротор на 36 лунок 36-Well Rotor/36-луночный ротор (или на 72 лунки 72-Well Rotor/72-луночный ротор), и отметить, что вы не используете пробирки с выпуклыми крышками (Rotor-Gene 3000)/закреплено фиксирующее кольцо (Rotor-Gene 6000). Нажать кнопку Next/Далее.
- 4. В открывшемся окне задать оператора и выбрать объем реакционной смеси: *Reaction volume/Объем реакции – 25 мкл*. Установить галочку напротив функции 15 µl oil layer volume/15 µL объем масла/воска. Нажать кнопку

Next/Далее.

5. В открывшемся окне необходимо задать температурный профиль эксперимента. Для этого нажать кнопку *Edit profile/Pedakmop профиля* и задать программу амплификации.

Этап	Температура, °С	Время	Измерение флуоресценции	Кол-во циклов
Hold/ Удерж. темп-ры	95	15 мин	_	1
Cycling 1/ Циклирование 1	95	5 c	_	
	60	20 c	—	5
	72	15 c	_	
	95	5 c	_	
Cycling 2/ Циклирование 2	60	20 c	FAM/Green, JOE/Yellow, ROX/Orange	40
	72	15 c	_	

Программа амплификации «АмплиСенс-1» для приборов роторного типа

- 6. После того как выбран температурный профиль эксперимента, нажать кнопку **ОК/Да**.
- 7. В окне New Run Wizard/Macmep Нового Tecma нажать кнопку Calibrate/Gain Optimisation.../Опт.уровня сигн.
 - a) осуществлять калибровку по каналам FAM/Green, JOE/Yellow, ROX/Orange (нажать кнопку *Calibrate Acquiring/Optimise Acquiring/Onm. Детек-мых*);
 - б) калибровать перед первым измерением (*Perform Calibration Before 1st* Acquisition/Perform Optimisation Before 1st Acquisition/Выполнить оптимизацию при 1-м шаге детекции);
 - в) для установки калибровки всех каналов нужно указать в графе Min Reading/Миним. Сигнал – 5, Max Reading/Максим. Сигнал – 10. Отметить галочкой Perform Calibration Before 1st Acquisition/Perform Optimisation Before 1st Acquisition/Выполнить оптимизацию при 1-м шаге детекции. Нажать кнопку Close/Закрыть.
- 8. Нажать кнопку *Next/Далее*, запустить амплификацию кнопкой *Start run/Cmapm*.
- 9. Дать название эксперимента и сохранить его на диске (в этом файле будут автоматически сохранены результаты данного эксперимента).
- 10. Внести данные в таблицу образцов (открывается автоматически после запуска амплификации). В колонке Name/Имя указать названия/номера исследуемых клинических образцов. Отрицательный контроль ПЦР обозначить как «К-», положительный «К+». Напротив всех исследуемых клинических образцов установить тип Unknown/Oбразец, положительного контроля ПЦР тип Positive сontrol/Положительный контроль, отрицательного контроля ПЦР тип NTC. Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 8 из 32

Для калибраторов – тип Standard/Стандарт и указать их концентрации в столбце Given Conc. Значения концентраций калибраторов указаны во вкладыше к набору реагентов. Для ячеек, соответствующих пустым пробиркам, установить тип None/Пусто.

ВНИМАНИЕ! При установке типа *None/Пусто* данные образца анализироваться не будут!

Анализ результатов реакции амплификации ДНК EBV (канал JOE/Yellow)

- 1. Проверить, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации (в случае количественного анализа).
- Активировать нажатием в меню кнопки Analysis/Анализ, выбрать режим анализа Quantitation/Количественный, активировать кнопку Cycling A. JOE/Cycling A. Yellow, Show/Показать.
- 3. Отменить автоматический выбор уровня пороговой линии *Threshold/Порог*.
- В меню основного окна (Quantitation analysis/Количественный анализ) должны быть активированы кнопки Dynamic tube/Динамич.фон, Slope Correct/Коррект.уклона.
- 5. В меню *CT Calculation/Вычисление CT* (в правой части окна) выставить уровень пороговой линии *Threshold/Порог* = 0.03.
- Выберите параметр More settings/Outlier Removal/Устранение выбросов и установите значение порога отрицательных проб (NTC Threshold/Порог Фона ПФ (NTC)) равным 10 %.
- 7. В таблице результатов (окно *Quant. Results/Количественные Результаты*) появятся значения *Ct*, а для количественных тестов значения концентраций (*Calc Conc (copies/reaction)*).
- 8. В отрицательном контроле экстракции (ОК) **ОКО** не должно быть каких-либо значений *Сt*.
- 9. В отрицательном контроле ПЦР (К–) **РНК-буфер** не должно быть каких-либо значений *Сt*.
- 10.В положительном контроле экстракции (ПК) ПКО ДНК ЕВV и ДНК человека значение *Ct* должно быть менее указанного во вкладыше, а для количественного теста расчетное значение концентрации должно укладываться в диапазон значений, указанный во вкладыше.
- 11.В положительном контроле ПЦР (К+) **KSG2** –значение *Ct* должно быть менее указанного во вкладыше (качественный тест).
- 12.В ДНК-калибраторах **KSG1** и **KSG2** должны появиться значения *Ct* и значения **Формат FRT Форма 2: REF** R-V9-100-S(RG,iQ,Mx); **REF** H-0862-1-1 / **VER** 30.03.21 / стр. 9 из 32

концентраций (*Calc Conc (copies/reaction)*) (количественный тест).

Анализ результатов амплификации BKO Glob (канал FAM/Green)

- 1. Проверить, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации в случае количественного теста.
- 2. Активировать нажатием в меню кнопки *Analysis/Анализ*, выбрать режим анализа *Quantitation/Количественный*, активировать кнопку *Cycling A. FAM/Cycling A. Green*, *Show/Показать*.
- 3. Отменить автоматический выбор уровня пороговой линии *Threshold/Порог*.
- В меню основного окна (Quantitation analysis/Количественный анализ) должны быть активированы кнопки Dynamic tube/Динамич.фон, Slope Correct/Коррект.уклона.
- 5. В меню *CT Calculation/Вычисление CT* (в правой части окна) выставить уровень пороговой линии *Threshold/Порог = 0.03*.
- Выберать параметр More settings/Outlier Removal/Устранение выбросов и установить значение порога отрицательных проб (NTC Threshold/Порог Фона ПФ (NTC)) равным 10 %.
- 7. В таблице результатов (окно Quant. Results/Количественные Результаты) должны появиться значения Сt для ДНК ВКО Glob в каждом исследуемом образце, а для количественных тестов – значения концентраций (Calc Conc (copies/reaction)). При этом значение Ct не должно превышать значение, указанное во вкладыше.
- 8. В отрицательном контроле экстракции (ОК) **ОКО** значение *Сt* отсутствует.
- 9. В отрицательном контроле ПЦР (К–) **РНК-буфер** значение *Сt* отсутствует.
- 10.В положительном контроле экстракции (ПК) ПКО ДНК ЕВV и ДНК человека значение *Ct* должно быть менее указанного во вкладыше, а для количественного теста должно быть определено значение концентрации.
- 11.В положительном контроле ПЦР (К+) **KSG2** –значение *Ct* должно быть менее указанного во вкладыше (качественный тест).
- 12.В ДНК-калибраторах KSG1 и KSG2 в случае количественного теста должны появиться значения *Ct* и значения концентраций (*Calc Conc (copies/reaction)*) (количественный тест).

Анализ результатов амплификации ВКО STI-87 (ROX/Orange)

- Проверьте, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации.
- Активировать нажатием в меню кнопки Analysis/Анализ, выбрать режим анализа Quantitation/Количественный, активировать кнопку Cycling A. ROX/Cycling A. Orange, Show/Показать.
- 3. Отменить автоматический выбор уровня пороговой линии *Threshold/Порог*.
- В меню основного окна (Quantitation analysis/Количественный анализ) должны быть активированы кнопки Dynamic tube/Динамич.фон, Slope Correct/Коррект.уклона.
- 5. В меню *CT Calculation/Вычисление CT* (в правой части окна) выставить уровень пороговой линии *Threshold/Поро* = 0.03.
- Выбрать параметр More settings/Outlier Removal/Устранение выбросов и установить значение порога отрицательных проб (NTC Threshold/Порог Фона – ПФ (NTC)) равным 10 %.
- 7. В таблице результатов (окно Quant. Results/Количественные Результаты) должны появиться значения Ct для ДНК ВКО STI-87 в каждом исследуемом образце, а для количественных тестов – значения концентраций (Calc Conc (copies/reaction)). При этом значение Ct не должно превышать значение, указанное во вкладыше.
- 8. В отрицательном контроле экстракции (ОК) **ОКО** значение *Сt* должно быть менее указанного во вкладыше.
- 9. В отрицательном контроле ПЦР (К–) **РНК-буфер** не должно быть каких-либо значений *Сt*.
- 10.В положительном контроле экстракции (ПК) ПКО ДНК ЕВV и ДНК человека значение *Ct* должно быть менее указанного во вкладыше, а для количественного теста должно быть определено значение концентрации.
- 11.В положительном контроле ПЦР (К+) **KSG2** –значение *Ct* должно быть менее указанного во вкладыше (качественный тест).
- 12.В ДНК-калибраторах **KSG1** и **KSG2** должны появиться значения *Ct* и значения концентраций (*Calc Conc (copies/reaction)*) (количественный тест).

Интерпретация результатов

Результат ПЦР-исследования считается достоверным, если получены правильные результаты для контролей этапов экстракции и амплификации ДНК в соответствии с таблицей оценки результатов контрольных реакций (см. инструкцию) Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 11 из 32

и граничными значениями, указанными во вкладыше, прилагаемом к набору реагентов.

Интерпретация результатов тестирования исследуемых образцов проводят в соответствии с инструкцией и вкладышем к набору реагентов.

ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА LineGene 9660 (BIOER TECHNOLOGY CO., LTD, Китай)

Провести этапы пробоподготовки и приготовления реакционных смесей согласно инструкции к набору реагентов. Для проведения амплификации рекомендуется использование тонкостенных пробирок для ПЦР объемом 0,2 мл с выпуклой или плоской крышкой (например, Axygen, Inc. («Эксиджен, Инк»), США) или пробирок объемом 0,2 мл в стрипах по 8 шт. с прозрачными крышками (например, Axygen, Inc. («Эксиджен, Инк»), США) (детекция через дно пробирки).

Запуск прибора и анализ результатов проводить при помощи программного обеспечения FRT Manager.

ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США)

Провести этапы пробоподготовки и приготовления реакционных смесей согласно инструкции к набору реагентов. Для проведения амплификации рекомендуется использование тонкостенных пробирок для ПЦР объемом 0,2 мл с выпуклой или плоской оптически прозрачной крышкой (например, Axygen, CША) (детекция через крышку пробирки).

Программирование амплификатора

- 1. Включить прибор и запустить программу **Bio-Rad CFX Manager**.
- 2. Запрограммировать прибор согласно инструкции изготовителя прибора.

Создание шаблона для проведения теста

- 1. В стартовом окне *Startup Wizard* необходимо выбрать позицию *Create a new Run/Experiment* (или в меню *File* выбрать *New* и далее *Run.../Experiment*...).
- В окне *Run Setup* выбрать вкладку *Protocol* и нажать кнопку *Create new...*. В появившемся окне *Protocol Editor New* задать параметры амплификации (время, температуру циклирования, количество циклов и указать шаг считывания флуоресцентного сигнала). Задать объем реакционной смеси *Sample Volume –* 25 мкл.

Цикл	Температура, °С	Время	Измерение флуоресценции	Кол-во циклов
1	95	15 мин	-	1
	95	5 c	-	
2	60	20 c	-	5
	72	15 c	-	
	95	5 c	-	
3	60	30 c	FAM, HEX, ROX	40
	72	15 c	_	

Программа амплификации «АмплиСенс-1» для приборов планшетного типа

ВНИМАНИЕ: Для каждого шага этапов циклирования нажав на кнопку *Step Options* задать скорость нагревания/охлаждения *Ramp Rate* 2,5 °C/sec (см. рис ниже). Нажать *OK*.

	1	95,0 C for 15:00	
\rightarrow	2	95,0 C for 0:05	
		Slow Ramp Rate to	2,5 Ciper second
	3	60,0 C for 0:20	
		Slow Ramp Rate to	2,5 Ciper second
	4	72,0 C for 0:15	
		Slow Ramp Rate to	2,5 Ciper second
	5	GOTO 2, 4	more times
\rightarrow	6	95,0 C for 0:05	
		Slow Ramp Rate to	2,5 Ciper second
	7	60,0 C for 0:30	
		+ Plate Read	
		Slow Ramp Rate to	2,5 Ciper second
	8	72,0 C for 0:15	
		Slow Ramp Rate to	2,5 Ciper second
	9	GOTO 6, 39	more times
		END	

- 3. Сохранить протокол: выбрать *File* и далее *Save As* в окне *Protocol Editor New* и ввести имя файла, нажать *Сохранить*. При последующих постановках можно выбрать файл с этой программой во вкладке *Protocol*, нажав на кнопку *Select Existing...*.Выбрав или отредактировав нужную программу, назначить ее использование, нажав кнопку *OK* в нижней части окна.
- 4. Задать схему планшета. Во вкладке *Plate* нажать кнопку *Create new....* В появившемся окне *Plate Editor New* задать расположение пробирок в модуле. Нажав кнопку *Select Fluorophores...,* выбрать галочками в колонке *Selected* все флуорофоры, используемые в данной постановке и нажать *OK*. В меню *Sample type* выбрать *Unknown* для всех образцов, кроме ДНК-калибраторов. Затем задать галочками в колонке *Load* (в правой части окна) измерение флуоресцентного сигнала для всех образцов по необходимым каналам. В окне *Sample name* задать название образцов, при этом параметр *Load* должен быть отмечен галочкой.

Для ДНК-калибраторов **К1** и **К2** для всех каналов обозначить **Sample type** – **Standard** и указать их концентрацию в поле **Concentration** в соответствии с вкладышем к набору реагентов, при этом параметр **Load** должен быть отмечен галочкой.

- Сохранить схему планшета: выбрать *File* и далее *Save As* в окне *Plate Editor New* и ввести имя файла, нажать *Сохранить*. Выбрав или отредактировав нужную схему планшета, назначить ее использование, нажав кнопку *OK* в нижней части окна.
- Выбрать вкладку Start Run. Открыть крышку прибора, нажав кнопку Open Lid.
 Поместить реакционные пробирки в ячейки амплификатора в соответствии с предварительно запрограммированной схемой планшета. Закрыть крышку

прибора, нажав кнопку *Close Lid*.

- Запустить выполнение выбранной программы с заданной схемой планшета, нажав на кнопку *Start Run*, выбрать директорию для сохранения файла постановки, ввести имя файла, нажать *Сохранить*.
- 8. После окончания программы приступить к анализу результатов.

Анализ результатов

Полученные результаты анализируются с помощью программного обеспечения прибора CFX96. Результаты интерпретируются на основании наличия (или отсутствия) пересечения кривой флуоресценции **S**-образной (сигмообразной) формы с установленной на соответствующем уровне пороговой линией, что определяет наличие (или отсутствие) значения порогового цикла Сt в соответствующей графе таблицы результатов. В соответствии значениями Ct калибраторов CO автоматически происходит построение калибровочного графика расчет И концентраций ДНК EBV.

- 1. Запустить программу, открыть сохраненный файл с данными анализа. Для этого выбрать в меню *File*, затем *Open* и *Data file* и выбрать необходимый файл.
- В окне Data Analysis во вкладке Quantification представлены кривые флуоресценции, расположение пробирок в модуле и таблица со значениями пороговых циклов.

Поочередно для каждого канала отметить галочкой *Log Scale* и установить уровень пороговой линии (перетащить ее курсором при нажатой левой кнопке мыши) на 10-20 % от максимального уровня флуоресценции образцов ПКО в последнем цикле амплификации. При этом кривая флуоресценции ПКО должна пересекать пороговую линию на участке характерного экспоненциального подъема флуоресценции, переходящего в линейный подъем.

- Нажав на кнопку панели инструментов View/Edit Plate..., задать в появившемся окне название образцов и концентрации калибраторов.
- Для формирования отчета о постановке необходимо выбрать на панели инструментов *Tools*, далее *Reports...* и сохранить сформированный документ, выбрав *File* и далее *Save As,* задать имя файла, нажать *Coxpaнumb*.

Интерпретация результатов

Результат ПЦР-исследования считается достоверным, если получены правильные результаты для контролей этапов экстракции и амплификации ДНК в соответствии с таблицей оценки результатов контрольных реакций (см. инструкцию) и граничными значениями, указанными во вкладыше, прилагаемом к набору реагентов.

Интерпретация результатов тестирования исследуемых образцов проводят в соответствии с инструкцией и вкладышем к набору реагентов.

ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА iCycler iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США)

Провести этапы пробоподготовки и приготовления реакционных смесей согласно инструкции к набору реагентов. Для проведения амплификации рекомендуется использование тонкостенных пробирок для ПЦР объемом 0,2 мл с выпуклой или плоской оптически прозрачной крышкой (например, Axygen, CША) (детекция через крышку пробирки).

1. Включить прибор, запустить программу iQ5.

ВНИМАНИЕ! Лампа должна быть прогрета до запуска эксперимента не менее 15 мин.

2. Поместить пробирки или стрипы в реакционный модуль амплификатора и запрограммировать прибор.

ВНИМАНИЕ! Следите за тем, чтобы на стенках пробирок не оставалось капель, так как падение капли в процессе амплификации может привести к сбою сигнала и усложнить анализ результатов. Не переворачивайте стрипы при установке в прибор.

<u>Программирование амплификатора осуществлять согласно инструкции</u> изготовителя прибора

- 1. Войти в режим создания нового протокола амплификации, нажав кнопку *Create new*, в модуле *Workshop*.
- 2. В открывшемся окне задать соответствующие параметры амплификации.

Программа амплис	рикации «АмплиСен	с-1» для прибор	ов планшетного типа

Цикл	Температура, °C	Время	Измерение флуоресценции	Кол-во циклов
1	95	15 мин	—	1
	95	5 c	—	
2	60	20 c	—	5
	72	15 c	—	
	95	5 c	—	
3	60	30 c	FAM, JOE/HEX, ROX	40
	72	15 c	—	

- 3. Дать название новому протоколу и сохранить его.
- 4. Создать новую плашку образцов (*Plate Setup*). Задать схему расположения пробирок в планшете.

Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 18 из 32

- 5. В открывшемся окне все клинические образцы обозначить как Unknown, положительные контроли как «+», отрицательные контроли как «–». Калибраторы по каналу JOE/HEX и FAM и ROX задать как Standard и указать концентрацию из вкладыша к набору реагентов. При задании калибраторов кнопка Whole Plate Loading должна быть не активирована. Для всех образцов и калибраторов задать измерение флюоресценции по трем каналам JOE/HEX, FAM, ROX.
- 6. Дать название схеме расположения пробирок и сохранить ее.
- 7. Нажать кнопку *Run*. В открывшемся окне отметить *Use Persistant Well Factors*, нажать кнопку *Begin Run* и сохранить эксперимент.

Анализ данных

- 1. Запустить программу и открыть сохраненный файл. Для этого в модуле *Workshop* нажать *Data file* и выбрать файл данных. Перейти в режим *Data Analysis*.
- 2. Просматривать данные отдельно по каждому каналу.
- 3. Для каждого канала проверить правильность автоматического выбора пороговой линии. В норме пороговая линия должна пересекать только сигмообразные кривые накопления сигнала положительных образцов и контролей и не пересекать базовую линию. В случае если это не так, повысить уровень порога, нажав кнопку *Log View* и установив уровень пороговых линий (левой кнопкой мыши) на таком уровне, где кривые флюоресценции носят линейный характер и не пересекают кривых отрицательных образцов. В таблице результатов (окно *Quant. Results*) появятся значения *Ct* для анализируемого канала.
- 4. Для анализа результатов нажать кнопку *Results* (расположена под кнопками с названиями флуорофоров).

Анализ результатов амплификации EBV (канал JOE/HEX)

Проверить, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации (для количественного анализа).

- 1. В таблице результатов появятся значения *Ct* для **ДНК** *EBV*, а для количественных тестов значения концентраций (copies/reaction).
- 2. В отрицательном контроле экстракции (ОК) **ОКО** не должно быть каких-либо значений *Сt*.
- В отрицательном контроле ПЦР (К–) РНК-буфер не должно быть каких-либо значений *Сt*.
- 4. В положительном контроле экстракции (ПК) ПКО ДНК ЕВV и ДНК человека значение *Ct* должно быть менее указанного во вкладыше, а для количественного теста расчетное значение концентрации должно укладываться в диапазон Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 19 из 32

значений, указанный во вкладыше.

- 5. В положительном контроле ПЦР (К+) **KSG2** –значение *Ct* должно быть менее указанного во вкладыше (качественный тест).
- 6. В ДНК-калибраторах **KSG1** и **KSG2** –должны появиться значения *Ct* и значения концентраций (количественный тест).

Анализ результатов амплификации ВКО Glob (канал FAM)

Проверить, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации (для количественного анализа).

- 1. В таблице результатов должны появиться значения *Ct* для **ДНК ВКО Glob** в каждом исследуемом образце, а для количественных тестов значения концентраций (copies/reaction). При этом значение *Ct* не должно превышать значение, указанное во вкладыше.
- 2. В отрицательном контроле экстракции (ОК) ОКО значение Сt отсутствует.
- 3. В отрицательном контроле ПЦР (К–) **РНК-буфер** значение *Сt* отсутствует.
- 4. В положительном контроле экстракции (ПК) ПКО ДНК ЕВV и ДНК человека значение *Ct* должно быть менее указанного во вкладыше, а для количественного теста должно быть определено значение концентрации.
- 5. В положительном контроле ПЦР (К+) **КSG2** значение *Ct* должно быть менее указанного во вкладыше (качественный тест).
- 6. В ДНК-калибраторах **KSG1** и **KSG2** должны появиться значения *Ct* и значения концентраций (*Calc Conc (copies/reaction)*) (количественный тест).

Анализ результатов амплификации ВКО STI-87 (канал ROX)

Проверить, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации (для количественного анализа).

- 1. В таблице результатов должны появиться значения *Ct* для **ДНК ВКО STI-87** в каждом исследуемом образце и отрицательном контроле экстракции (OK), а для количественных тестов значения концентраций (copies/reaction). При этом значение *Ct* не должно превышать значение, указанное во вкладыше.
- 2. В отрицательном контроле экстракции (ОК) **ОКО** значение *Сt* должно быть менее указанного во вкладыше.
- 3. В отрицательном контроле ПЦР (К–) **РНК-буфер** не должно быть каких-либо значений *Сt*.
- 4. В положительном контроле экстракции (ПК) **ПКО ДНК** *EBV* и **ДНК человека** значение *Ct* должно быть менее указанного во вкладыше, а для количественного теста должно быть определено значение концентрации.
- 5. В положительном контроле ПЦР (К+) KSG2 -значение Сt должно быть менее

указанного во вкладыше (качественный тест).

6. В ДНК-калибраторах – **KSG1** и **KSG2** –должны появиться значения *Ct* и значения концентраций (*Calc Conc (copies/reaction)*) (количественный тест).

Интерпретация результатов

Результат ПЦР-исследования считается достоверным, если получены правильные результаты для контролей этапов экстракции и амплификации ДНК в соответствии с таблицей оценки результатов контрольных реакций (см. инструкцию) и граничными значениями, указанными во вкладыше, прилагаемом к набору реагентов.

Интерпретация результатов тестирования исследуемых образцов проводят в соответствии с инструкцией и вкладышем к набору реагентов.

ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРОВ Mx3000P/Mx3005P (Stratagene, США)

Провести этапы пробоподготовки и приготовления реакционных смесей согласно инструкции к набору реагентов. Для проведения амплификации рекомендуется использование тонкостенных пробирок для ПЦР объемом 0,2 мл с выпуклой или плоской оптически прозрачной крышкой (например, Axygen, CША) (детекция через крышку пробирки).

- 1. Включите прибор, запустите программу Stratagene Mx3000P/Mx3005P.
- 2. В окне New Experiment Options выберите пункт Quantitative PCR (Multiple Standards) и установите флажок Turn lamp on for warm-up.

ВНИМАНИЕ! Лампа должна быть прогрета до запуска эксперимента не менее 15 мин.

3. Установите пробирки в прибор, закройте крышку.

ВНИМАНИЕ! Будьте внимательны! Не переворачивайте стрипы при установке в прибор.

- В меню Options выбрать пункт Optics Configuration и на вкладке Dye Assignment напротив пункта HEX/JOE filter set установить параметр JOE, напротив пункта FAM filter set установить параметр FAM, напротив ROX filter set – ROX.
- 5. Закрыть фиксатор и дверцу прибора.
- 6. В окне New Experiment Options выбрать пункт Quantitative PCR (Multiple Standards) и установить флажок Turn lamp on for warm-up.
- 7. В меню *Plate Setup* задать параметры измерения флуоресценции. Для этого:
 - а) выбрать все ячейки, в которых установлены исследуемые пробирки или стрипы (удерживая клавишу *Ctrl* и выделяя необходимый диапазон мышью).
 - б) Обозначить все выделенные ячейки как Unknown в окне Well type. Для опции Collect fluorescence data установить три флажка FAM, JOE и ROX. Далее, дважды щелкая по каждой ячейке, внести имя для каждого исследуемого образца (Окно Well Information). Внести подписи образцов так же можно во время амплификации или после ее окончания, вернувшись в меню Plate Setup.
 - в) Калибраторы по каналу **JOE/HEX**, **FAM** и **ROX** задать как **Standard** и указать концентрацию из вкладыша к набору реагентов.
- 8. Перейдите на вкладку *Thermal Profile Setup*, задайте программу амплификации. Для этого используйте один из следующих способов:

<u>Использование шаблонного файла</u> для задания программы амплификации (рекомендуется).

Нажмите кнопку *Import...* справа от изображения профиля термоциклирования. Перейдите в папку, содержащую предшествующий экспериментальный файл, и откройте его. В окне *Thermal Profile* появиться необходимый профиль термоциклирования.

Самостоятельное программирование

 После задания всех необходимых значений и параметров, снова выделить все ячейки, в которых установлены исследуемые пробирки. Перейти в меню *Thermal Profile Setup*, задать соответствующую программу амплификации.

Цикл	Температура, °С	Время	Измерение флуоресценции	Кол-во циклов
1	95	15 мин	—	1
	95	5 c	_	
2	60	20 c	_	5
	72	15 c	_	
	95	5 c	_	
3	60	30 c	FAM, JOE/HEX, ROX	40
	72	15 c	_	

Программа амплификации «АмплиСенс-1» для приборов планшетного типа

- Для задания параметра измерения флуоресцентного сигнала при заданной температуре, необходимо выбрать опцию *All points* для параметра *Data collection marker by dragging* и перетянуть ее мышкой с правой части поля на полку с нужной температурой.
- 3. Запустить амплификацию, нажав кнопку *Run*, затем *Start* и присвоив имя файлу эксперимента.

<u>Анализ данных</u>

- Проверьте, чтобы в таблице образцов были обозначены калибраторы и заданы их концентрации (для количественного анализа).
- 2. Перейти в раздел *Analysis*, выбрав соответствующую кнопку на панели инструментов.
- На открывшейся вкладке Analysis Selection/Setup убедиться, что все исследуемые образцы активны (ячейки соответствующие образцам должны иметь другой оттенок). В противном случае выбрать все исследуемые образцы, удерживая клавишу Ctrl и выделяя необходимый диапазон мышью.
- 4. Перейти на вкладку *Results*.
- 5. Убедиться, что три флуоресцентных канала активны (кнопки JOE, FAM, ROX нажаты

Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 23 из 32

в поле *Dyes Shown* внизу окна программы).

6. В поле Treshold fluorescense убедиться, что галочки стоят напротив трех флуоресцентных каналов: JOE, FAM, ROX. Проверьте правильность автоматического выбора пороговой линии. В норме пороговая линия должна пересекать только сигмообразные кривые накопления сигнала положительных образцов и контролей и не пересекать базовую линию. В случае если это не так, повысьте уровень порога.

(По умолчанию кривые накопления сигнала отображаются прибором в линейном виде. Чтобы изменить вид кривых с линейных на логарифмические, дважды щелкните левой кнопкой мыши в области одной из осей (Х или Y), в появившемся окне *Graph properties* для оси Y (Y axis) поставьте галочку в поле *Scale* напротив пункта *Log*).

- 7. В таблице результатов появятся значения *Ct* для **ДНК** *EBV* (по каналу JOE/HEX), **ДНК ВКО Glob** (по каналу FAM), **ДНК ВКО STI-87** (по каналу ROX), а для количественных тестов – значения концентраций (copies/reaction). По каналам FAM и ROX значение *Ct* для исследуемых образцов должно быть менее указанного во вкладыше.
- В отрицательном контроле экстракции (ОК) ОКО не должно быть каких-либо значений *Ct* по каналу FAM и JOE/HEX значение *Ct* должно быть менее указанного во вкладыше по каналу ROX.
- 9. В отрицательном контроле ПЦР (К–) **РНК-буфер** не должно быть каких-либо значений *Ct* по каналам FAM JOE/HEX и ROX.
- 10.В положительном контроле экстракции (ПК) ПКО ДНК ЕВV и ДНК человека значение *Ct* должно быть менее указанного во вкладыше по всем каналам, для количественного теста расчетное значение концентрации должно укладываться в диапазон значений, указанный во вкладыше.
- 11.В положительном контроле ПЦР (К+) **KSG2** –значение *Ct* должно быть менее указанного во вкладыше по всем каналам (качественный тест).
- 12.В ДНК-калибраторах **KSG1** и **KSG2** –должны появиться значения *Ct* и значения концентраций (copies/reaction) по всем каналам (количественный тест).

Интерпретация результатов

Результат ПЦР-исследования считается достоверным, если получены правильные результаты для контролей этапов экстракции и амплификации ДНК в соответствии с таблицей оценки результатов контрольных реакций (см. инструкцию) и граничными значениями, указанными во вкладыше, прилагаемом к набору Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 24 из 32

реагентов.

Интерпретация результатов тестирования исследуемых образцов проводят в соответствии с инструкцией и вкладышем к набору реагентов.

ПРОВЕДЕНИЕ АМПЛИФИКАЦИИ И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА «ДТ-96» (ООО «НПО ДНК-Технология», Россия)

Провести этапы пробоподготовки и приготовления реакционных смесей согласно инструкции к набору реагентов. Для проведения амплификации рекомендуется использование тонкостенных пробирок для ПЦР объемом 0,2 мл с выпуклой или плоской оптически прозрачной крышкой (например, Axygen, Inc. («Эксиджен, Инк»), США) или пробирок объемом 0,2 мл в стрипах по 8 шт. с прозрачными крышками (например, Ахуgen, Inc. («Эксиджен, Инк»), США) (детекция через крышку пробирки).

Программирование амплификатора

- Включить прибор, запустить программу RealTime_PCR v.7.3 и выше, запрограммировать прибор согласно инструкции изготовителя прибора. В стартовом окне необходимо выбрать существующего оператора или добавить нового оператора и выбрать режим *Работа с прибором.*
- 2. В диалоговом окне *Список приборов* выбрать необходимый прибор и нажать кнопку *Подключить*.

Создание шаблона для проведения теста

- В меню Тест на верхней панели выбрать команду Создать/Редактировать тест, ввести название нового теста «АмплиСенс-1» и нажать кнопку ОК. В появившемся окне Тест задать следующие параметры:
 - Тип качественный;
 - Метод Пороговый (Ct);
 - Пробирки отметить галочкой образец, контроль+, контроль–, стандарт;
 - Стандарты количество 2; дубли 2; в колонке копий указать концентрацию;
 - Контроли: положительный (К+) 1; отрицательный (К–) 1;
 - Объем рабочей смеси в пробирке 25 мкл.
 - Флуорофоры Fam, Hex (для версии программы v.7.3.2.2 и выше выбрать R6G) и Rox (Fam, Rox – BK; Hex/R6G – специфика).
 - Задать программу амплификации. Для этого в окне *Тест* нажать кнопку Создать новую программу, задать параметры амплификации и сохранить шаблон, нажав кнопу *ОК*. Ввести имя файла, нажать кнопку *Сохранить*.

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
1	95	15 мин	-	1
	95	5 c	-	
2	60	20 c	-	1
	72	15 c	-	
	95	5 c	-	
3	60	30 c	Fam, Hex/R6G, Rox	40
	72	15 c	—	

Программа амплификации «АмплиСенс-1» для приборов планшетного типа

Примечание – Каналы **Су5** и **Су5.5** включаются при необходимости, если проводятся тесты в формате «мультипрайм», для которых используются эти каналы.

- 2. В окне Тест нажать кнопку ОК.
- 3. Выбрать вкладку *Протокол*. Нажать кнопку *Добавить тест* и в появившемся окне выбрать название «АмплиСенс-1», указать количество образцов, нажать *ОК.*
- 4. Присвоить имена образцам в графе Идентификатор в появившейся таблице. Указать расположение пробирок в рабочем блоке прибора, поставив галочку напротив функции Свободное заполнение, сняв предварительно галочку с функции Автозаполнение. Нажать кнопку Применить.
- 5. В открывшейся вкладке Запуск программы амплификации, указать объем рабочей смеси 25 мкл и нажать кнопку Запуск программы.
- 6. Нажать кнопку **Открыть блок** и установить пробирки в строгом соответствии с указанным расположением пробирок в рабочем блоке прибора.

ВНИМАНИЕ! Следите за тем, чтобы на стенках пробирок не оставалось капель, так как падение капли в процессе амплификации может привести к сбою сигнала и усложнить анализ результатов. Не переворачивать пробирки (стрипы) при установке в прибор.

 Последовательно нажать кнопки Закрыть блок и Запуск программы.
 Сохранить эксперимент. Поставить при необходимости галочку Выключить прибор по завершении амплификации.

Использование готового шаблонного файла для проведения теста

Для запуска прибора можно также использовать ранее созданный шаблон теста с заданными параметрами амплификации и заданным количеством контролей. Для этого:

 во вкладке Протокол нажать кнопку Добавить тест и в появившемся окне выбрать название «АмплиСенс-1», указать количество образцов, нажать ОК;

- присвоить имена образцам в графе Идентификатор в появившейся таблице.
 Указать расположение пробирок в рабочем блоке прибора, поставив галочку напротив функции Свободное заполнение, сняв предварительно галочку с функции Автозаполнение. Нажать кнопку Применить;
- в меню Запуск программы амплификации проверить правильность выбранной программы амплификации и объема реакционной смеси, заданных в шаблоне теста.

Анализ результатов

Полученные результаты анализируются с помощью программного обеспечения прибора «ДТ-96». Результаты интерпретируются на основании наличия (или отсутствия) пересечения кривой флуоресценции **S**-образной (сигмообразной) формы с установленной на соответствующем уровне пороговой линией, что определяет наличие (или отсутствие) значения порогового цикла Сt в соответствующей графе таблицы результатов. В соответствии калибраторов СО значениями Ct происходит построение калибровочного автоматически графика И расчет концентраций ДНК EBV, ВКО STI-87 и ДНК человека.

- 1. Открыть сохраненный файл с данными анализа.
- 2. Указать в выпадающем списке **Тип анализа**: **Сt(Cp) для всех каналов** (**Мультиплекс** для версии программы v.7.5. и выше).
- 3. Указать в выпадающем списке Метод: Пороговый (Ct).
- 4. Нажать кнопку **Изменить параметры анализа**
 - Критерий положительного результата ПЦР 90 %,
 - Критерии достоверности результата: поставить галочку, нижняя граница/порог положительного результата – 10 %, верхняя граница/порог нормализации данных – 10 %.
 - Нормализация данных не использовать (по умолчанию галочка в соответствующем окне отсутствует).

Нажать кнопку Применить.

- 5. Отключить Фитирование (сглаживание) данных при помощи кнопки Ф (отжать кнопку).
- 6. Для каждого канала проверить правильность автоматического выбора пороговой линии. Пороговая линия (*Threshold*) должна пересекать только S-образные (сигмообразные) кривые накопления сигнала положительных образцов и контролей и не пересекать базовую линию. В случае если это не так, необходимо

Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 28 из 32

установить вручную уровень пороговой линии для каждого канала. Для этого нужно внизу окна программы поставить галочку в поле *Log_Y* (переключение в логарифмический вид) и установить уровень пороговой линии (левой кнопкой мыши) на таком уровне, где кривые флуоресценции носят линейный характер и отсутствует пересечение с кривыми отрицательных образцов. Как правило, пороговая линия устанавливается на уровне, соответствующем **10-20%** от максимального уровня флуоресценции, полученного для образца любого положительного контроля в последнем цикле амплификации. При этом необходимо, чтобы график флуоресценции положительного контроля показывал характерное экспоненциальное нарастание флуоресцентного сигнала.

7. Для дальнейшей работы с данными можно скопировать результаты значений *Ct* для всех каналов в таблицу Excel из таблицы со значениями программного обеспечения прибора. Для формирования отчета в виде файла Word нажать

кнопку *Отиет по результатам анализа* . Далее выбрать галочками параметры, необходимые для отображения в отчете, нажать кнопку *Сохранить отчет как...* (рекомендуется сохранять отчет в папку *Mou документы*), выбрать формат «*MS Word/Acrobat Reader/JPEG/HTML» и папку для сохранения, присвоить имя файлу и нажать кнопку *Сохранить*.

Интерпретация результатов

Результат ПЦР-исследования считается достоверным, если получены правильные результаты для контролей этапов экстракции и амплификации ДНК в соответствии с таблицей оценки результатов контрольных реакций (см. инструкцию) и граничными значениями, указанными во вкладыше, прилагаемом к набору реагентов.

Интерпретация результатов тестирования исследуемых образцов проводят в соответствии с инструкцией и вкладышем к набору реагентов.

ВОЗМОЖНЫЕ ОШИБКИ

 Наличие любого значения *Ct* в таблице результатов по каналу ROX/Orange для отрицательного контроля ПЦР (К–), по каналам FAM/Green и JOE/HEX/Yellow для отрицательного контроля ПЦР (К–) и отрицательного контроля экстракции (OK) свидетельствует о наличии контаминации реактивов или образцов. В этом случае следует повторить ПЦР-исследование для всех образцов, в которых обнаружена ДНК, начиная с этапа экстракции ДНК.

- Если при проведении качественного теста значение *Ct* в таблице результатов для положительного контроля (K+) ПЦР – **KSG2** – по каналам JOE/Yellow/HEX (*EBV*), FAM/Green или ROX/Orange отсутствует или более порогового – необходимо повторить амплификацию для всех образцов, в которых не обнаружена ДНК *EBV*.
- 3. Если значение Сt в таблице результатов для положительного контроля экстракции (ПК) – ПКО ДНК ЕВV и ДНК человека – по каналам JOE/Yellow/HEX (EBV), FAM/Green или ROX/Orange отсутствует или более порогового – результаты анализа по всем образцам считаются недействительными. Необходимо повторить анализ всех образцов с этапа ПЦР.
- 4. Если для данного образца по каналу JOE/Yellow/HEX не определено значение порогового цикла *Ct* или определено выше порога, заданного во вкладыше, и по каналу FAM/Green или ROX/Orange получено значение *Ct*, превышающее максимальное значение, приводимое для BKO – необходимо провести повторный анализ, начиная с этапа экстракции. Возможная причина: ошибка в процедуре подготовки клинического материала, приведшая к потере ДНК или наличие ингибиторов ПЦР.
- 5. Если для данного образца по каналу JOE/Yellow/HEX определено значение *Ct* выше порога, заданного во вкладыше, а по каналу FAM/Green или ROX/Orange получено значение *Ct*, менее порогового, то результат считается сомнительным. Необходимо провести дополнительное исследование данного образца ДНК в двух повторах. В случае получения воспроизводимого положительного значения *Ct* результат считать положительным. При получении невоспроизводимых в двух повторах значений результат считается сомнительным.
- 6. Если при проведении количественного теста значения копий на реакцию в калибраторах более чем на 30 % отличаются от заданных – необходимо проверить порядок размещения пробирок в роторе (калибраторы должны находиться в ячейках, соответствующих названию *Standard* в таблице образцов, концентрация образцов должна соответствовать, концентрации, указанной во вкладыше, а для приборов роторного типа лунка 1 обязательно должна быть заполнена какой-либо исследуемой пробиркой (не пустой)).
- 7. Если при проведении количественного теста коэффициент корреляции R в окне Standard Curve менее 0.9 – сбой калибровки. Необходимо проверить правильность задания калибраторов и исправить неточности. Если это не помогает – переставить ПЦР для всех проб и калибраторов.

РАСЧЕТ КОНЦЕНТРАЦИЙ ДНК ЕВV

Расчет концентрации в логарифмах копий ДНК ЕВV на 105 клеток при экстракции ДНК из цельной крови, лейкоцитов крови, биоптатов внутренних органов проводится по формуле:

Ig { <u>число_копий_ДНК_EBV_в_ПЦР-пробе</u> 2*10⁵} = Ig (копий ДНК *EBV*/10⁵ клеток) число_копий_ДНК_Glob_в_ПЦР-пробе

Для выражения относительной концентрации ДНК *EBV* в копиях на стандартное количество клеток (например, на 10⁵) используется коэффициент пересчета:

 10^5 клеток = $2*10^5$ геномов человека

Расчет концентрации ДНК ЕВV на мл образца при экстракции ДНК из плазмы периферической крови, амниотической жидкости, бронхоальвеолярного лаважа, смывов и мазков из ротоглотки, спинномозговой жидкости (ликвора) совместно с внутренним контрольным образцом проводится по формуле:

КК ДНК *ЕВV* = (КДНК *ЕВV* / КSTI-87) х коэффициент ВКО (копий ДНК *ЕВV*/мл)

К ДНК ЕВV – количество копий ДНК ЕВV в ДНК-пробе;

КSTI-87 – количество копий ДНК STI-87 в ДНК-пробе;

коэффициент ВКО – соответствует числу копий ВКО ДНК STI-87 в мл и указан во вкладыше к каждой серии наборов реагентов и специфичен для каждого лота.

ВНИМАНИЕ! Набор реагентов «АмплиСенс[®] *EBV*-скрин/монитор-FL» валидирован относительно международного стандарта BO3 – 1st WHO International Standard for Epstein-Barr virus for nucleic acid amplification techniques, NIBSC code 09/260, version 2.0, 12/01/2012 (Великобритания). Коэффициент пересчета копий ДНК *EBV*/мл в МЕ/мл для набора реагентов «АмплиСенс[®] *EBV*-скрин/монитор-FL» равен 1,7:

1 МЕ ДНК *ЕВV*/мл = 0,59 копий ДНК *ЕВV*/мл

Расчет концентрации ДНК *EBV* в образцах плазмы периферической крови, цельной крови, амниотической жидкости, спинномозговой жидкости (ликвора), слюны, смывов и мазков из ротоглотки, бронхоальвеолярного лаважа в МЕ ДНК *EBV*/мл проводится по формуле:

КДНК *EBV* х коэффициент BKO x 1,7 = ME ДНК *EBV*/мл КSTI-87

К ДНК ЕВV – количество копий ДНК ЕВV в ДНК-пробе;

КSTI-87 – количество копий ДНК STI-87 в ДНК-пробе;

Формат FRT Форма 2: REF R-V9-100-S(RG,iQ,Mx); REF H-0862-1-1 / VER 30.03.21 / стр. 31 из 32

коэффициент ВКО – соответствует числу копий ВКО ДНК STI-87 в мл и указан во вкладыше к каждой серии наборов реагентов и специфичен для каждого лота.